首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7622篇
  免费   674篇
  国内免费   847篇
  2024年   14篇
  2023年   149篇
  2022年   193篇
  2021年   444篇
  2020年   336篇
  2019年   466篇
  2018年   390篇
  2017年   274篇
  2016年   389篇
  2015年   528篇
  2014年   595篇
  2013年   626篇
  2012年   694篇
  2011年   596篇
  2010年   367篇
  2009年   338篇
  2008年   375篇
  2007年   324篇
  2006年   298篇
  2005年   208篇
  2004年   242篇
  2003年   205篇
  2002年   163篇
  2001年   154篇
  2000年   116篇
  1999年   93篇
  1998年   73篇
  1997年   54篇
  1996年   80篇
  1995年   64篇
  1994年   50篇
  1993年   27篇
  1992年   42篇
  1991年   32篇
  1990年   31篇
  1989年   21篇
  1988年   24篇
  1987年   16篇
  1986年   12篇
  1985年   18篇
  1984年   6篇
  1983年   7篇
  1982年   5篇
  1981年   4篇
排序方式: 共有9143条查询结果,搜索用时 843 毫秒
101.
Increased expression and activity of cardiac and circulating cathepsin D and soluble fms‐like tyrosine kinase‐1 (sFlt‐1) have been demonstrated to induce and promote peripartum cardiomyopathy (PPCM) via promoting cleavage of 23‐kD prolactin (PRL) to 16‐kD PRL and neutralizing vascular endothelial growth factor (VEGF), respectively. We hypothesized that activation of Hes1 is proposed to suppress cathepsin D via activating Stat3, leading to alleviated development of PPCM. In the present study, we aimed to investigate the role of Notch1/Hes1 pathway in PPCM. Pregnant mice between prenatal 3 days and postpartum 3 weeks were fed with LY‐411575 (a notch inhibitor, 10 mg/kg/d). Ventricular function and pathology were evaluated by echocardiography and histological analysis. Western blotting analysis was used to examine the expression at the protein level. The results found that inhibition of Notch1 significantly promoted postpartum ventricular dilatation, myocardial hypertrophy and myocardial interstitial fibrosis and suppressed myocardial angiogenesis. Western blotting analysis showed that inhibition of Notch1 markedly increased cathepsin D and sFlt‐1, reduced Hes1, phosphorylated Stat3 (p‐Stat3), VEGFA and PDGFB, and promoted cleavage of 23k‐D PRL to 16‐kD PRL. Collectively, inhibition of Notch1/Hes1 pathway induced and promoted PPCM via increasing the expressions of cathepsin D and sFlt‐1. Notch1/Hes1 was a promising target for prevention and therapeutic regimen of PPCM.  相似文献   
102.
103.
Interleukin‐10 (IL‐10) displays well‐documented anti‐inflammatory effects, but its effects on osteoblast differentiation have not been investigated. In this study, we found IL‐10 negatively regulates microRNA‐7025‐5p (miR‐7025‐5p), the down‐regulation of which enhances osteoblast differentiation. Furthermore, through luciferase reporter assays, we found evidence that insulin‐like growth factor 1 receptor (IGF1R) is a miR‐7025‐5p target gene that positively regulates osteoblast differentiation. In vivo studies indicated that the pre‐injection of IL‐10 leads to increased bone formation, while agomiR‐7025‐5p injection delays fracture healing. Taken together, these results indicate that IL‐10 induces osteoblast differentiation via regulation of the miR‐7025‐5p/IGF1R axis. IL‐10 therefore represents a promising therapeutic strategy to promote fracture healing.  相似文献   
104.
Pancreatic cancer (PC) is a leading cause of cancer‐related mortality globally. Though increasing evidence has demonstrated that circular RNAs (circRNAs) are linked to the development and progression of cancers, the biological functions of circRNAs in PC remain largely unexplored so far. Based on previous studies, Hsc_circ_0075829 (circ_0075829) was screened out and then further identified in PC clinical specimens and cell lines by real‐time PCR. After the stability tests, a series of in vitro and in vivo functional experiments were performed to investigate the role of circ_0075829 in PC development. Furthermore, fluorescent in situ hybridization (FISH), bioinformatics tools, dual‐luciferase assays and rescue experiments were conducted to clarify the regulatory mechanisms of circ_0075829 in SW1990 and BxPC‐3 cells. Compared with paracancerous tissues, the expression of circ_0075829 was increased in PC tissues, which was positively correlated with the clinical features of PC. Knockdown of circ_0075829 significantly suppressed the proliferative, migratory and invasive rates of SW1990 and BxPC‐3 cells both in vitro and in vivo. Bioinformatics analysis and dual‐luciferase reporter gene assay indicated that circ_0075829 could bind to miR‐1287‐5p. Mechanism research and rescue experiments demonstrated that circ_0075829 could regulate the LAMTOR3/p‐ERK signalling pathway via sponging miR‐1287‐5p in PC cell lines. Our data reveal that the circ_0075829 could facilitate the proliferation and metastasis of PC through circ_0075829/miR‐1287‐5p/LAMTOR3 axis.  相似文献   
105.
Coronary artery disease (CAD) is one of the biggest threats to human life. Circulating microRNAs (miRNAs) have been reported to be linked to the pathogenesis of CAD, indicating the possible role in CAD diagnosis. The present study aimed to explore the expression profile of plasma miRNAs and estimate their value in diagnosis for CAD. 67 Non‐CAD control subjects and 88 CAD patients were enrolled. We conducted careful evaluation by RT‐PCR analysis, Spearman rank correlation coefficients analysis, Receiver Operating Characteristic (ROC) curves analysis and so on. The plasma levels of six miRNAs known to be related to CAD were measured and three of them showed obvious expression change. Circulating miR‐29a‐3p, miR‐574‐3p and miR‐574‐5p were all significantly increased. ROC analysis revealed the probability of the three miRNAs as biomarkers with AUCs (areas under the ROC curve) of 0.830, 0.792 and 0.789, respectively. They were significantly correlated with each other in CAD patients, suggesting the possibility of joint diagnosis. The combined AUC was 0.915, much higher than each single miRNA. Therefore, our study revealed three promising biomarkers for early diagnosis of CAD. The combination of these miRNAs may act more effectively than individual ones for CAD diagnosis.  相似文献   
106.
N6-methyladenosine (m6A) modification has been reported in various diseases and implicated in increasing numbers of biological processes. However, previous studies have not focused on the role of m6A modification in fracture healing. Here, we demonstrated that m6A modifications are decreased during fracture healing and that methyltransferase-like 3 (METTL3) is the main factor involved in the abnormal changes in m6A modifications. Down-regulation of METTL3 promotes osteogenic processes both in vitro and in vivo, and this effect is recapitulated by the suppression of miR-7212-5p maturation. Further studies have shown that miR-7212-5p inhibits osteoblast differentiation in MC3T3-E1 cells by targeting FGFR3. The present study demonstrated an important role of the METTL3/miR-7212-5p/FGFR3 axis and provided new insights on m6A modification in fracture healing.  相似文献   
107.
108.
CsPbI2Br is emerging as a promising all‐inorganic material for perovskite solar cells (PSCs) due to its more stable lattice structure and moisture resistance compared to CsPbI3, although its device performance is still much behind this counterpart. Herein, a preannealing process is developed and systematically investigated to achieve high‐quality CsPbI2Br films by regulating the nucleation and crystallization of perovskite. The preannealing temperature and time are specifically optimized for a dopant‐free poly(3‐hexylthiophene) (P3HT)‐based device to target dopant‐induced drastic performance degradation for spiro‐OMeTAD‐based devices. The resulting P3HT‐based device exhibits comparable power conversion efficiency (PCE) to spiro‐OMeTAD‐based devices but much enhanced ambient stability with over 95% PCE after 1300 h. A diphenylamine derivative is introduced as a buffer layer to improve the energy‐level mismatch between CsPbI2Br and P3HT. A record‐high PCE of 15.50% for dopant‐free P3HT‐based CsPbI2Br PSCs is achieved by alleviating the open‐circuit voltage loss with the buffer layer. These results demonstrate that the preannealing processing together with a suitable buffer layer are applicable strategies for developing dopant‐free P3HT PSCs with high efficiency and stability.  相似文献   
109.
110.

(R)-Mandelic acid (R-MA) is a key precursor for the synthesis of semi-synthetic penicillin, cephalosporin, anti-obesity drugs, antitumor agents, and chiral resolving agents for the resolution of racemic alcohols and amines. In this study, an enzymatic method for the large-scale production of R-MA by a stereospecific nitrilase in an aqueous system was developed. The nitrilase activity of the Escherichia coli BL21(DE3)/pET-Nit whole cells reached 138.6 U/g in a 20,000-L fermentor. Using recombinant E. coli cells as catalyst, 500 mM R,S-mandelonitrile (R,S-MN) was resolved into 426 mM (64.85 g/L) R-MA within 8 h, and the enantiomeric excess (ee) value of R-MA reached 99%. During the purification process, pure R-MA with a recovery rate of 78.8% was obtained after concentration and crystallization. This study paved the foundation for the upscale production of R-MA using E. coli whole cells as biocatalyst.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号